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Abstract 

Lateral-torsional buckling is a major stability concern for long span flexural members, especially 

during construction and in the negative moment regions of composite I-girders. The classical 

solution for lateral-torsional buckling was formulated several decades ago for a simply-supported 

doubly-symmetric I-beam subjected to uniform moment. The classical solution was subsequently 

modified in order to design for other boundary conditions and loading scenarios, by the use of 

empirical equations for moment magnification factors. Finite element modelling to calculate 

lateral-torsional buckling capacities, though accurate, is not practical to implement in every 

design scenario. The use of empirical equations is also problematic, given that there are different 

equations for moment modification factors in literature and international design specifications 

for identical loading and boundary conditions. This paper shows that each of these equations is 

most accurate within a limited range of applicability. The authors derive the critical lateral-

torsional buckling moment solutions using the Rayleigh-Ritz method for beams with both 

simply-supported and fixed boundary conditions, and subjected to different loading scenarios. 

Finally, these analytical solutions are shown to compare well with finite element models for a 

few sample cross-sections. 

Keywords: Elastic lateral-torsional buckling, Moment gradient, Rayleigh-Ritz method, End 

restraints 

1. Introduction 

Lateral-torsional buckling (LTB) generally occurs when the compression flange is free to move 

laterally and the cross-section is free to twist. Timoshenko and Gere (1916) derived the elastic 

lateral-torsional buckling solution for flexurally and torsionally simply-supported doubly-

symmetric I-beams subjected to a uniform moment as given in Eq. 1. This is the basic critical 

moment (Mocr). 
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where; E is the Young’s modulus of elasticity, Iy is the minor axis moment of inertia, Iw is the 

warping constant, G is the shear modulus, J is the St.-Venant torsion constant, L is the unbraced 

length. 

Considering that the critical elastic buckling capacity of laterally unsupported beams are 

influenced by the support and loading conditions, the point of application of load in a cross-

section, etc., several methods have been developed in the literature (Kirby and Nethercot 1979; 

Salvadori 1956; Serna et al. 2006; Wong and Driver 2010) to evaluate the critical moment of 

laterally unsupported beams for limited support conditions under the action of in-plane bending 

moments. Design codes and standards of various countries recommend different empirical 

methods to modify the elastic LTB capacity, while accounting for these factors. 

The elastic critical moment Mcr is the capacity obtained from Eq. 1 multiplied by coefficients 

that take into account the loading and boundary conditions. The moment modification factors are 

typically functions of bending moments or compression flange stresses at different points along 

the unbraced length of the beam. 

Existing formulations in literature are obtained numerically, and each of them is only accurate 

within a specific range of use as discussed in the course of this paper. This is established using a 

general analytical framework that provides more accurate expressions for the LTB moment 

modification factor. The current study focuses on the evaluation of critical moments using the 

energy method for two types of boundary conditions (fully fixed and simply-supported) 

subjected to different loading conditions, such as linear moment gradients, a concentrated load at 

midspan, and uniformly distributed loads. Given that the closed-form solution to the differential 

equation of equilibrium for the different moment-gradient cases are unknown, the Rayleigh-Ritz 

approach is used here to derive these solutions. The deflection functions (i.e., the functions for 

the twist of the cross-section and lateral deflections) are assumed, such that the boundary 

conditions for all considered cases are satisfied. The LTB strength is then obtained by 

minimizing the total potential energy of the system. The energy method has been used by many 

(Galambos and Surovek 2008; Timoshenko and Gere 1961; Yoo and Lee 2012) to arrive at the 

elastic critical buckling load for simply-supported beams subjected to concentrated loads and 

uniformly distributed load, and a cantilever beam subjected to concentrated load.  

The results obtained from the Rayleigh-Ritz method are validated with finite element 

simulations, and also compared against different solutions in the literature. This work seeks to 

establish accurate formulations for the prediction of the elastic critical moment of steel beams for 

several common cases of loading and end-restraint conditions, while also evaluating the 

conditions for which the existing equations are most suitable. 

2. Evaluation of Mcr using existing design codes and empirical formulae 

The basic critical moment equation proposed by Timoshenko and Gere (1916) in Eq. 1 has been 

modified by others for different loading and boundary conditions using empirical equations. 

Some of these are described in this section. 

1.1 American Institute of Steel Construction (AISC 2016) 

The nominal elastic lateral–torsional buckling moment of doubly-symmetric I-sections as per 

AISC (2016) is calculated using Eq. 2. The flexural strength equation given in AISC (2016) 

yields identical results to that specified in Eq. 1. 
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, Sx is the elastic section modulus taken about the major axis, Cb is the 

lateral-torsional buckling modification factor and ho is the distance between the flange centroids. 

The moment modification factor, Cb used in AISC (1961, 1986) is given by Eq. 3 which gives a 

lower bound of the solution proposed by Salvadori (1956). However, this equation is applicable 

primarily for linear moment gradient loading cases. 
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where; M1 is the smaller moment at the end of the unbraced length, and M2 is the larger moment 

at the end of the unbraced length. The later editions of the AISC specification (AISC 2016) 

provide the moment modification factor based on Kirby and Nethercot (1979), given in Eq. 4 

which is also valid for nonlinear moment gradient loading. 
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where; Mmax is the absolute value of the maximum moment in the unbraced segment, and MA, 

MB, MC are the absolute values of the bending moments at the quarter-, mid-, and three-quarter 

points of the unbraced segments, respectively. 

Eqs. 3 and 4 are applicable for warping-free conditions, the use of these equations for warping-

fixed conditions can lead to unconservative estimates of the Mcr as shown in this paper. 

1.2 British Standard, BS 5950  

BS 5950-1 (2000), makes use of an equivalent uniform moment factor mLT to take into account 

the moment gradient effects. The inverse of mLT is the same as the moment modification factor, 

Cb, given in Eq. 5. It can be observed that the equation is similar to Eq. 4, however, slightly 

different coefficients are considered for reverse curvature bending in simply-supported beams. 
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Eurocode (CEN, 2005) does not provide specific equations to calculate Mcr or Cb, but Gardner 

and Nethercot (2005) propose modifications similar to those in BS 5950-1 (2000). Hence, 

Eurocode is not considered separately in the current studies.  

1.3 Contemporary literature  

While using the equations proposed by (Kirby and Nethercot 1979; Salvadori 1956) one can 

predict the elastic LTB strength that agrees well with the actual strength within a limited error for 

simply-supported boundary conditions. The results are shown to be unconservative for warping-
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fixed conditions. Nethercot and Rockey (1972) provided solutions that can be used for the 

warping-fixed condition, for a concentrated load at midspan and a uniformly distributed load, 

both applied at the shear center in Eqs. 6 and 7. 

2

1.916 0.426 1.851
    

= − +      
   

w w
b

EI EI
C

L GJ L GJ
                                    (6) 

2

2.093 0.947 3.117
    

= − +      
   

w w
b

EI EI
C

L GJ L GJ
                                    (7) 

Serna et al. (2006), using finite difference and finite element methods, proposed a general 

expression for the equivalent uniform moment factor. The finite element analyses were 

conducted for two cross-sections, and two different unbraced lengths. The authors studied 

laterally and flexurally simply-supported (i.e., the elastic effective length factor, K=1), and fixed 

conditions. (i.e., the effective length factor, K=0.5). The authors also looked at both warping 

restraint and warping-free conditions (i.e., the warping restraint factor, Kw=1, and Kw=0.5). They 

observed that AISC (1994) was conservative for simply-supported beams and unconservative for 

beams that were fixed both laterally and torsionally. The solution provided by them is presented 

in Eq. 8 and is valid for doubly-symmetric steel I-beams transversely loaded at the shear center 

for any given support condition and moment distribution along the unbraced length. 
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k is equal to 1 if both lateral bending and warping are free, and equal to 0.5 if both lateral 

bending and warping are prevented at the ends of the unbraced segment. 

Wong and Driver (2010) compared the equivalent moment factors from numerical results with 

those described in various literature, for a wide range of moment loading conditions. They found 

that all available methods predict the moment capacities well for linear moment distributions in 

single curvature, and reverse curvature bending with a k (ratio of end moments) value up to 0.5. 

The results from AISC (2016) were found to be conservative up to 18% for reverse curvature 

bending. Although the quarter-point moment equation proposed by Serna et al. (2006) was able 

to capture the trends of the numerical data, the results however seem to exceed the numerical 

solutions for a beam subjected to a uniformly distributed load with one end moment. An 

improved method was proposed by Wong and Driver using quarter-point moments given in Eq. 

9, which applies only to warping-free conditions. 
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These modification factors, which are used along with the elastic LTB solution presented by 

Timoshenko and Gere (1916), are usually fit to finite element or finite difference methods for 

moment gradients. These equations are derived for specific loading conditions, but are 

universally applied to all loading and boundary conditions. Most of these formulations are 

accurate within a limited range of applicability. Therefore, in this work, a general theoretical 

model based on the Rayleigh-Ritz formulation is proposed where closed-form solutions for a 

wide range of boundary and loading conditions are presented. 

3. LTB Strength Using Rayleigh-Ritz Formulation  

This section provides the elastic lateral-torsional buckling solutions obtained using the Rayleigh-

Ritz method for both simply-supported and fixed beams, subjected to various loading conditions 

as listed in Table 1. 

The critical buckling moment solutions are found to be a factor of Mocr derived by Timoshenko 

for the basic case of uniform moment and fork boundary conditions. Thus, these solutions can 

also be used to directly calculate the LTB moment modification factor, Cb, as the ratio of Mcr 

with Mocr. Similarly, the fixed beams are subjected to a uniform moment, concentrated load at 

the midspan, and a uniformly distributed load. These solutions are obtained by using the 

principle of virtual work.  

Table 1: Loading and boundary conditions studied using the energy method  

Case study 

No. 

Bending moment 

diagram 

In-plane flexural 

boundary condition 

Out-of-plane 

flexural boundary 

condition 

Warping 

1 
M M

 
simply-supported simply-supported free 

2 
M βM

 
simply-supported simply-supported free 

3 
P

 

simply-supported simply-supported free 

4 
w

 
simply-supported simply-supported free 

5 
M M

 
fixed fixed fixed 

6 
P

 
fixed fixed fixed 

7 
w

 
fixed fixed fixed 

The following assumptions are made to derive the LTB equation for the I-beams: 

1. The I-beams are subjected to bending about their major principal axis. 

2. The beams are doubly symmetric. 

3. The assumed deflections and twists are small. 

4. The material is linear-elastic, homogenous, and isotropic. 
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5. The flanges and webs are compact, to preclude local buckling. 

6. No distortion occurs in the cross-section during buckling. 

The base case of a doubly-symmetric I-beam with fork boundary conditions subjected to uniform 

moments is shown in Figure 1. In this figure, x and y are the distances measured along the major 

and minor axes of the cross-section, z is the distance along the span of the beam, L is the 

unbraced length of the member, ϕ is the twist of the cross-section, and v and u are the in-plane 

(y-axis) and lateral/ out-of-plane (x-axis) deflections, respectively. The result obtained for this 

reference case using the energy formulation is compared with Timoshenko’s solution. 

In the principle of virtual work, the total potential, Π is determined as the sum of the elastic 

energy of the system, U and the potential of the external forces, V. The total potential is a 

constant. 

 = +U V                                                                            (10) 

The total elastic strain energy of the beam is given by  
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The total potential of the system can hence be written as  
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where; Mx is the moment about the major axis, u՛՛ is the second derivative of the lateral deflection 

u, ϕ՛ is the first derivative of the twist ϕ, and ϕ՛՛՛ is the second derivative of ϕ. 

It is important to note that the potential energy formulation is a function of loading conditions or 

the bending moment (M), and unknown coefficients of the displacement functions (u and ϕ). It is 

shown in Section 1.11 that the assumed number of terms in the displacement functions provides 

sufficient accuracy. These unknowns may be calculated by applying the Rayleigh-Ritz technique 

in Eq. 10c, minimizing the potential energy of the system (δΠ = 0). 

This method is applied to different boundary and loading conditions, a few of which are 

discussed in the following subsections. 

1.4 Simply-supported beam subjected to uniform moment 

A simply-supported beam subjected to uniform moment is shown in Figure 1. Here, the solution 

from the Rayleigh-Ritz method is shown to be identical to the solution provided by Timoshenko 

and Gere (1916). 
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Figure 1: (a) longitudinal profile and (b) cross-section of the simply-supported beam 

The boundary conditions for a simply-supported beam are given by  

0                at 0 and u u z z L  = = = = = =                                          (11) 

The assumed displacement functions are  

sin , sin= =
z z
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The bending moment at any section along the length of the beam, xM M=  

The total potential energy calculated using Eq. 10c is given by 
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Differentiating the total energy with respect to the unknowns A and B, the following Eqs. 14a 

and 14b are obtained. 
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The total potential being constant, Eqs. 14a and 14b are equated to zero. 
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Thereby, the solution for critical elastic lateral-torsional moment (Mocr) for the base case can be 

obtained by evaluating the determinant of the above matrix. 
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Eq. 15 is the same as the equation derived by Timoshenko and Gere (1916). 

1.5 Simply-supported beam subjected to varying moment 

A simply-supported beam subjected to a linearly varying moment is shown in Figure 2. The 

factor β, which is the ratio of end moments, is positive for single curvature, and negative for 

reverse curvature bending. 

M βM

L

z

 

Figure 2: Simply-supported beam subjected to linearly varying moments.  

Based on the boundary conditions, the assumed displacement functions are given as follows:  
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The bending moment at a distance z from the left support is given by ( )1 1x
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The total potential energy calculated using Eq. 10c is given by 
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The total potential being constant, the differentiation of the total energy with respect to the 

unknowns is equated to zero. The critical elastic LTB moment can be obtained by solving the 

simultaneous equations as given in Eq. 18. 
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Eq. 18 can be expressed as CbMocr, where 
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. This equation is 

later compared with empirical solutions and finite element solutions for a range of values of β for 

both single curvature and reverse curvature. 
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1.6 Simply-supported beam subjected to a concentrated load at the mid-span 

A simply-supported beam subjected to a concentrated load at midspan is shown in Figure 3. The 

assumed displacement functions are the same as those in Eq. 16. 

P
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z

 

Figure 3: Simply-supported beam with a concentrated load at the center 

The bending moment at a distance z from the left support is given by  

                         for 
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The total potential energy calculated using Eq. 10c is given by 
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Considering the total potential to be constant, the differentiation of total energy with respect to 

the unknowns is equated to zero. The critical elastic buckling load can be obtained by solving the 

simultaneous equations, and is given by Eq. 20. 
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The critical elastic LTB moment can be obtained as given in Eq. 21 by recognizing that 

4
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Eq. 21 can be expressed as CbMocr, where, Cb is equal to 1.423. 

1.7 Simply-supported beam subjected to a uniformly distributed load 

A simply-supported beam subjected to a uniformly distributed load is shown in Figure 4. The 

assumed displacement functions are the same as those given by Eq. 16. 
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Figure 4: Simply-supported beam with uniformly distributed loads 

The bending moment at a cross-section at a distance z from the left support is given by 

( )2

2
x

w
M Lz z= −  

The total potential energy calculated using Eq. 10c is given by 

( )24 2 4 2 4 22 2

3 3 3

34

4 4 4 24
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Considering the total potential to be constant, the differentiation of the total energy with respect 

to the unknowns can be equated to zero. Solving the system of simultaneous equations, the 

critical elastic buckling load is obtained as  

( )

2 22

2 22 2

12

3

y w
cr

EI EI
w GJ

L LL

 



 
= + 

+  
                                            (23) 

The critical elastic LTB moment can be obtained as given in Eq. 24, by using the relation, 
2
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Again, Mcr can be expressed as CbMocr, where, Cb is equal to 1.15. 

1.8 Fixed-fixed beam subjected to uniform moment 

A fixed beam subjected to uniform moment is shown in Figure 5. This beam is fixed both in-

plane and out-of-plane at its supports. The boundary condition for in-plane fixity is only used to 

determine the relationship between the buckling load and the buckling moment. However, for the 

discussion on the beam subjected to uniform moments in this section, the solution would be the 

same even if the beam were simply-supported in-plane, and fixed out-of-plane. 
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Figure 5: Fixed-fixed beam with uniform moments 

The boundary conditions for a beam with lateral bending and torsion fixed are given by  

0                at 0 and u u z z L  = = = = = =                                         (25) 

The assumed displacement functions are  

2 2
1 cos , 1 cos
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The bending moment at any distance z is constant, and xM M=  

The total potential energy calculated using Eq. 10c is given by 
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The total potential being constant, differentiation of the total energy with respect to the 

unknowns can be equated to zero. The critical elastic LTB moment can be obtained by solving 

the system of simultaneous equations as given in Eq. 28. 

Eq. 28 indicates that the effective length factor, K for the fixed-ended beam is 0.5, i.e., on 

substituting 0.5L in place of L in the equation for Mocr (Eq. 15), one may obtain Eq. 28 as the 

base Mocr-f  for the fixed condition. Eq. 28 can also be used for beams that are simply-supported 

in the in-plane direction, and fixed only in the out-of-plane direction (warping and torsion are 

fixed). 
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1.9 Fixed-fixed beam subjected to concentrated load applied at the shear center at midspan 

A fixed beam subjected to a concentrated load at midspan is shown in Figure 6. The 

displacement boundary conditions are given in Eq. 25. 
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Figure 6: Fixed-fixed beam with a concentrated load at the center 

The assumed displacement functions are  

2 4 2
1 cos 1 cos , 1 cos
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The bending moment at a distance z is given by 
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The total potential energy calculated using Eq. 10c is given by 
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As before, solving a set of simultaneous equations, considering the total potential to be constant, 

the critical elastic buckling load is obtained as  

2 22

2 2

9

106

2 2

 

 
 
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    

    

y w
cr

EI EI
P GJ

L L L
                                            (31) 

The critical elastic LTB moment can be obtained from 
8

cr
cr

P L
M =  

2 2

2 2
1.0784

2 2

 

 
 
 = +
    
    

    

y w
cr

EI EI
M GJ

L L
                                               (32) 

Eq. 32 can be obtained by using Cb equal to 1.078, when compared against the reference case of 

a fixed-fixed beam subjected to a uniform moment in the equation for Mocr-f (Eq. 28). 
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1.10 Fixed beam subjected to uniformly distributed load 

The schematic representation of a fixed beam subjected to uniform moment is shown in Figure 7. 

The displacement boundary conditions are given in Eq. 25 and the assumed displacement 

functions are the same as those in Eq. 29. 

w

L

z

 

Figure 7: Fixed-fixed beam with uniformly distributed loads 

The bending moment at a distance z is given by, ( )2 26 6
12

x

w
M Lz L z= − −  

The total potential energy calculated using Eq. 10c is given by 

4 2 4 2 4 22 2

3 3 3

4 64 4 7 11

8 9

  
 = + + + − +

y y w
EI A EI B EI CGJC LCAw LCBw

L L L L
                 (33) 

Considering the total potential to be constant, and solving the simultaneous equations, the critical 

elastic buckling load is obtained as  

2 22

2 22

144

4453

2 2

 

 
 
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    

    

y w
cr

EI EI
w GJ

L L L
                                           (34) 

The critical elastic LTB moment can be obtained from the relation 
2

12
= cr

cr

w L
M  as given in Eq. 

35. 

2 2

2 2
1.7748

2 2

 

 
 
 = +
    
    

    

y w
cr

EI EI
M GJ

L L
                                               (35) 

Here Cb equals to 1.77, when compared against Eq. 28. 

1.11 Convergence study 

This section discusses the number of polynomials required in the assumed displacement 

functions. The convergence of the solution is demonstrated by considering a larger number of 

polynomials in the assumed shape functions for all the cases studied in Sections 1.4-1.10. In this 

section, only the solution for simply-supported beams subjected to a concentrated load at 
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midspan is presented. The results from the studies show that the obtained solutions in Sections 

1.4-1.10 are within 6 % of the exact value. 

The assumed displacements for a simply-supported are given by  

2 4
sin sin sin , sin= + + =

z z z z
u A B C D

L L L L

   
                                      (36) 

The bending moment for the beam subjected to a concentrated load at midspan is given by  

                        for 
2 2

( )
                    for 

2 2

x

Pz L
M z

P L z L
z

= 

−
= 

 

The total potential energy calculated using Eq. 10c is given by 

( ) ( ) ( )4 2 2 2 2 2 2 2 2

3 3

16 256 4

4 4 16

   + + + +
 = + −

y wEI A B C D GJL EI ADP

L L
                  (37) 

Considering the total potential to be minimum, the differentials of the total potential with respect 

to unknowns can be equated to zero. Solving the simultaneous equations, we get the critical 

elastic buckling load as  

( )

2 22

2 22

8

4

 



 
= + 

+  

y w
cr

EI EI
P GJ

L LL
                                             (38) 

The critical elastic LTB moment can be obtained from 
4

= cr
cr

P L
M  as given in Eq. 39. 

2 2

2 2
=1.4232  

  
+ 

 

y w
cr

EI EI
M GJ

L L
                                               (39) 

The Mcr given in Eq. 39 is the same as the critical elastic LTB moment obtained in Eq. 21. This 

shows that number of terms considered in the assumed solution are sufficient. Repeating this 

exercise for other loading and boundary conditions discussed in this paper shows that the results 

are within 6% of the accurate value. 

4. Numerical Simulations Using Finite Element Analyses 

The elastic buckling analyses are performed using SABRE2 (White et al. 2018), a structural 

analysis and design software to compare the critical buckling moment obtained in Sections 1.4-

1.10. SABRE2 (White et al. 2018) employs 7-degree of freedom beam elements including the 

warping degree of freedom. The solutions from SABRE2 are also verified with a few studies 

using buckling analyses in (ABAQUS 2022). Following a mesh convergence study, eight 

elements are used per unbraced segment in the simulations. The boundary conditions used to 

simulate the simply-supported beams and fixed beams are shown in Figure 8. 
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z
x

y

a

Simply-supported

at shear center, a

ux = uy = uz = 0 (pin end)

θz = 0 (pin end)

ux = uy = 0 (roller end)

θz = 0 (roller end)

warping free

Fixed

at shear center, a

ux = uy = uz = 0 (pin end)

θx = θy = θz = 0 (pin end)

ux = uy = uz = 0 (roller end)

θx = θy = θz = 0 (roller end)

warping fix

Boundray condition

 

Figure 8: Boundary conditions for simply-supported and fixed beams 

5. Comparative Study and Discussions 

Two narrow parallel flange (NPB) sections are chosen from BIS (2004) for the validation 

studies. The dimensions of the chosen sections are shown in Table 2. The chosen sections are 

classified as plastic sections (Class I) as per BIS (2007). The critical elastic LTB moment 

calculated using the formulae developed in Sections 1.4-1.10, Mcr,energy, and the elastic LTB 

capacity obtained from the finite element analysis (FEA), Mcr,FEA for the chosen sections for the 

14 different cases are compared in Table 3. 

Cases 1-11, shown in Table 3 are flexurally and torsionally simply-supported, while cases 12-14 

are modelled as flexurally-fixed and warping-fixed boundary conditions. The results obtained are 

also compared with the existing solutions given in various National/International codes (AISC 

2016; BS 5950-1 2000) and literature (Salvadori 1956; Serna et al. 2006; Wong and Driver 2010) 

in Figures 9-12. Figures 9(a) and 10(a) compare the empirical equation given in codes (AISC 

2016; BS 5950-1 20005) and the proposed equations with the critical elastic LTB moment 

obtained from FEA for NPB 400, and 600, respectively. Similarly, Figures 9(b) and 10(b) 

compare the empirical equation given in the literature (Nethercot and Rockey 1972; Salvadori 

1956; Serna et al. 2006; Wong and Driver 2010) and the proposed equations with the critical 

elastic LTB moment obtained from FEA for NPB 400 and 600, respectively. In Figures 9 and 10, 

the y-axis is the normalized elastic critical LTB moment obtained from FEA with the Mcr from 

different formulations, and the numbers in the x-axis represent the case number given in Table 3. 

Table 2: Dimensions of the NPB sections (BIS 2004) chosen for the validation studies in mm 

Section 
Length, 

L 

Web depth, 

D 

Web 

thickness, tw 

Flange 

width, bf 

Flange 

thickness, tf 
D/bf bf /2tf 

NPB 400 6000 373 7.0 180 12.0 2.1 7.5 

NPB 600 6000 562 9.8 220 17.5 2.6 6.3 
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Figure 9: Comparison of Mcr obtained from FEA with Rayleigh-Ritz method and equations given in (a) code (b) 

other empirical methods (NPB 400) 
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Figure 10: Comparison of Mcr obtained from FEA with Rayleigh-Ritz method and equations given in (a) code (b) 

other empirical methods (NPB 600) 

The following conclusions are drawn from Table 3 and Figures 9 and 10: 

1. The calculated elastic LTB moment strength for beams in design codes are typically 

conservative, and the conservatism increases with an increase in the moment gradient. This is 

particularly true for the beams subjected to reverse curvature (Cases 6-9). The elastic LTB 

strength of a simply-supported beam, as calculated using AISC (2016) and British standard 

(BS 5950-1 2000), are very similar and can be up to 28% and 25% conservative, 

respectively, for a β value of -0.75. 

2. The design code equations tend to be unconservative by up to 45 % for beams with warping 

fixity. The British standard (BS 5950-1 2000) predicts strengths that are 26% and 14% 

greater than the true solutions for fixed beams subjected to a concentrated load and a 

uniformly distributed load, respectively. As previously mentioned and demonstrated in these 

plots, the use of AISC (2016) equation to determine the elastic LTB strength of beams with 

the warping-fixed condition is significantly unconservative with an overestimation of up to 

45%.  
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Table 3: Comparison of the elastic critical LTB moment obtained from the energy method with FE solutions 

Case study no. Bending moment diagram 
NPB 400 NPB 600 

Mcr,energy/Mcr,FEA Mcr,energy/Mcr,FEA 

Case 1 

β = +1 

 

0.98 0.99 

Case 2 

β = + ¾ 

 

0.98 0.98 

Case 3 

β = + ½ 

 

0.98 0.98 

Case 4 

β = + ¼ 

 

0.98 0.98 

Case 5 

β = 0 

 

0.97 0.97 

Case 6 

β = - ¼ 

 

0.95 0.95 

Case 7 

β = - ½ 

 

0.94 0.94 

Case 8 

β = - ¾ 

 

0.96 0.96 

Case 9 

β = - 1 

 

0.98 0.98 

Case 10 

  
0.94 0.94 

Case 11 
 

0.97 0.97 

Case 12 
 

0.97 0.97 

Case 13 
 

0.97 0.98 

Case 14 
 

1.00 1.00 

3. The comparison with the literature shows that the equation given by Salvadori (1956), 

applicable for linear moment gradients estimates the elastic lateral-torsional buckling 

moment conservatively with a maximum conservatism of 23% for β equal to -0.75. The 

equation proposed by Wong and Driver (2010) is accurate to conservative up to 18% (for 
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simply-supported beams with reverse curvature bending), but predicts strengths that are 25% 

unconservative for Cases 13 and 14 (i.e., beams with warping-fixed condition). 

4. The solutions by Nethercot and Rockey (1972), which are also presented in Galambos (1998) 

for warping-fixed conditions are also unconservative by 25% for Case 14. 

5. Serna et al. (2006) predict strengths that are typically lower than the FEA results (up to 8% 

for simply-supported beams with reverse curvature bending with β equal to -1) and are 

unconservative (⁓8%) for a fixed beam subjected to a uniformly distributed load. These 

equations appear to provide the best estimates of Cb considering different loading and 

boundary conditions. 

6. The LTB capacity estimated using the Rayleigh-Ritz method matches with the numerical 

results obtained from FEA with a maximum difference of 6% for a simply-supported beam 

with a concentrated load at midspan. 

7. These studies essentially show that the energy formulations would be most beneficial, when 

applied to simply-supported beams subjected to reverse curvature, and for warping-fixed 

conditions. 

6. Conclusions 

While the LTB moment modification equations recommended in design codes and specifications 

are mostly reasonable, they may either lead to overly conservative or unconservative designs, 

particularly for reverse curvature loading and warping-fixed conditions. Further, the existing 

modification factors are empirical in nature. In this study, the closed-form solutions for the 

elastic LTB capacity of beams with both simply-supported and fixed boundary conditions, and 

subjected to different moment gradient scenarios are derived using the Rayleigh-Ritz method. 

The key findings are summarized below: 

1. The recommended closed-form solutions from the Rayleigh-Ritz method are compared with 

the results from FE simulations for specific beam parameters. The proposed equations are 

applicable with a maximum difference of 6% between the analytical and numerical results.  

2. Also, the proposed Rayleigh-Ritz formulation provides a quick and effective means to 

predict LTB behaviour, where only geometrical and material parameters are required to 

implement the formulation. The equations provided are also of a simple form and can be 

easily used by design engineers.  

3. The modification factor, Cb for fixed beams should be defined with respect to a fixed beam 

subjected to uniform moment, rather than the simply-supported beam in Timoshenko’s 

solution. 

4. The equations in design codes tend to be conservative for simply-supported beams subjected 

to reverse curvature, and unconservative for beams with warping-fixed conditions. 

5. The equations by Serna et al. appear to be the best solutions considering different loading and 

boundary conditions. 

Although the paper only presents the solutions for a few select cases, the same displacement 

shape functions may be used for other loading conditions to obtain the corresponding expression 

for the elastic critical buckling moment. This offers a more rigorous approach to formulating Cb 

as compared to empirical fits to numerical data. 
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7. Nomenclature 

Cb Moment modification factor 

D Clear depth of the web 
 

E Young’s modulus of elasticity 

G Modulus of rigidity 

Iy Minor axis moment of inertia of the cross-section 

Iw Warping constant 

J St.-Venant torsion constant 

K Effective length factor 

Kw Warping restraint factor 

L Unbraced length of the selected I-beam 

M Bending moment 

MA, MB, 

MC  

Absolute values of the bending moments at the quarter-, mid- and three-

quarter points of the unbraced segments, respectively 

Mcr Critical elastic lateral-torsional buckling moment 

Mmax  Absolute value of maximum moment in the unbraced segment 

Mocr Critical elastic lateral-torsional moment for simply-supported beam subjected 

to uniform moment 

Mocr-f Critical elastic lateral-torsional moment for fixed beam subjected to uniform 

moment 

M1 Smaller moment at the end of unbraced length 

M2 Larger moment at the end of unbraced length 

P Magnitude of the transverse concentrated load 

Pcr Elastic critical buckling load  

Sx Elastic section modulus taken about the major axis 

U Elastic strain energy of the system 

V Potential of the external forces 

bf Width of flange 

ho Distance between the flange centroids 

tf  Flange thickness 

tw Web thickness 

u Lateral deflection 

v Vertical deflection 

w Magnitude of the uniformly distributed load 

z Distance measured along the length 

Π Total potential of the system 

Φ Twist of the cross-section 

β Ratio of end moments, negative for reverse curvature bending 

LT  Non-dimensional slenderness of beam 
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